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Rue de Leupe, 90400 Sevenans, France
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bstract

In this paper, a method to monitor PEM fuel cells internal temperature from surface measurements is presented. The aim of this work is to
onitor fuel cells to prevent damages due to internal overheating. The measurements are taken at the side of the bipolar plate, and heat flux

nd temperature at the border of the active zone are estimated. The method is based on sensitivity analysis and inverse problem algorithms. The
athematical formulation and algorithm are described. The model is a transient heat conduction model in two dimensions, the inverse problem is
olved with an optimization method using adjoint equation. Numerical test cases are presented for graphite and steel bipolar plates. The results
how that internal temperature can be correctly estimated. The response time of the method is limited by the heat transfer rate in the material.
herefore, the method is particularly appropriate to fuel cells made of steel bipolar plates.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Internal temperature is one of the key parameters to monitor
n proton exchange membrane fuel cells. The first reason is that
he operating point efficiency depends on its value, the second
s that a sharp raise in temperature can be an indication that
irect combustion between air and hydrogen happens in the fuel
ell. This combustion may cause important damages. Therefore,
n this paper, a method based on inverse problem methodology
o estimate internal temperatures from surface measurements is
resented. The aim of the study is to investigate the capability
f monitoring fuel cells with non-invasive temperature sensors.
nverse heat conduction problem is a topic that has been discus-
ed by several authors [1–4]. In the field of fuel cells, only a

ew articles are published. In references [5,6] studies on steady
tate temperature distribution at the interface between the carbon
late and the membrane electrode assembly from measurements
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n the outer surface of the end plate are reported. The work
resented here deals with the estimation of fuel cell transient
nternal temperature from surface temperature measurements
aken at the side of bipolar plates. First, a mathematical method
ased on sensitivity analysis to estimate the possibilities of the
nverse problem methodology is described, then the method to
olve the inverse problem of 2D transient heat conduction is
resented. The methodology relies on approaches developed in
1–3]. The paper is divided into three sections. In the first sec-
ion, the heat conduction model in the fuel cell is formulated.
he second section describes the mathematical formulation and
ethod, the third part presents numerical results and summarizes

he conclusions.

. Model and formulation

.1. General description
A proton exchange membrane (PEM) fuel cell is considered.
urface temperature measurements are assumed to be possible
t the side of the bipolar plates. The aim of this work is to esti-
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Nomenclature

D descent direction
G gradient
h height of area under study (m)
i iteration number
k thermal conductivity (W m−1 K−1)
l length of the area under study (m)
L objective function
S objective function including the constraints
t time variable
tf final time
T temperature (◦C)
T0 initial temperature (◦C)
u heat flux (W m−2)
x horizontal coordinate
y vertical coordinate

Greek symbols
α thermal diffusivity (m2 s−1)
β conjugate direction coefficient
γ descent step
δ Dirac function
�T temperature increment
�u heat flux increment
τ reverse time variable
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ψ Lagrange multiplier

ate the internal temperatures of the plate in the active zone
f the fuel cell (Fig. 1). The physical problem is formulated
s a heat transfer problem. In the border zone of the bipolar
late, an unknown heat flux is considered to be flowing from
he inside of the plate towards the outside. The purpose of this
tudy is to estimate this heat flux and the internal temperature
n order to monitor the fuel cell and prevent a destructive heat
levation.

.2. Problem formulation
.2.1. Physical problem
The problem is a problem of transient heat conduction in two

imensions with no heat generation (Fig. 2).

Fig. 1. Problem geometry.
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Fig. 2. Physical description.

The area under study is limited by:

0 ≤ x ≤ l

0 ≤ y ≤ h

It is considered that except on the left limit, the zone is
hermally insulated.

.2.2. Direct problem formulation
With the preceding assumptions, the direct problem formu-

ation is [7]:

∂2T

∂x2 + ∂2T

∂y2 = 1

α

∂T

∂t

−k ∂T
∂x

= u(x, y, t), x = 0

k
∂T

∂x
= 0, x = l

−k ∂T
∂y

= 0, y = 0

k
∂T

∂y
= 0, y = h

T (x, y, 0) = T0

(1)

here α denotes diffusivity, k conductivity, u unknown heat flux,
0 initial temperature that is supposed constant.

.2.3. Sensitivity problem formulation
In order to be able to estimate what happens on the left side

f the area, we have to check that the heat transfer produces a
ignificant temperature elevation on the right side. This tempe-
ature evolution has to be measurable by the sensors used. If this
s not the case, the estimation cannot be performed. This leads

o sensitivity analysis [1].

The unknown heat flux u is perturbed by a small pertur-
ation �u in (1). Consequently, the temperature is perturbed
y �T.
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(1) is subtracted to the perturbed problem. This yields to the
ensitivity problem:

∂2�T

∂x2 + ∂2�T

∂y2 = 1

α

∂�T

∂t

−k ∂�T
∂x

= �u(x, y, t), x = 0

k
∂�T

∂x
= 0, x = l

−k ∂�T
∂y

= 0, y = 0

k
∂�T

∂y
= 0, y = h

�T (x, y, 0) = 0

(2)

ith the results of the sensitivity analysis, it is possible to
esign an experiment that leads to a good inverse problem
olution.

.2.4. Inverse problem formulation
To estimate internal temperatures, computation of the heat

ux at the plate left side is necessary. The internal temperature
n x = 0 is then computed by solving the direct problem. Thus,
he inverse problem of estimating internal temperature is divided
nto two steps:

tep 1: Compute u(0, y, t) from T(l, y, t)
tep 2: Compute T(0, y, t) from u(0, y, t)

. Numerical computations

.1. Direct and sensitivity problems

The direct and sensitivity problem are classic heat transfer
roblems. For numerical heat transfer computations, we use a
nite difference scheme in two dimensions [8].

.2. Inverse problem

The inverse heat conduction problem (step 2) is iteratively
olved by a gradient method. The gradient is computed using
n adjoint problem. Among the various methods to derive the
djoint problem, the Lagrange multipliers are employed. The
ollowing paragraphs describe the method used. More details
an be found in [1–3].

.2.1. Objective function
The objective function is the quadratic residual between the

omputed temperatures and the measured temperatures:

(u) = 1

2

∫ h

0

∫ l

0

∫ tf

0
(Tcomputed(u, x, y, t) − Tmeasured(x, y, t))2
× δ(x− l)δ(y − ymeas)dtdxdy

here Tmeasured denotes measured temperatures at the right
ide of the area, Tcomputed computed temperatures at the same

i

G
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oints, δ Dirac delta function and ymeas coordinates of the mea-
urements. The inverse problem is solved by minimizing this
bjective function under the constraint that the unknown func-
ion u(x, y, t) verifies the direct problem (1).

.2.2. Minimization algorithm
The conjugate gradient method [9] whose algorithm is as

ollows is employed:

D0 = −G0

γi−1 = Arg min J(Ui−1 − γDi−1)

Ui = Ui−1 + γi−1Di−1

βi−1 = 〈GTi ,Gi −Gi−1〉
||Gi−1||2

Di = −Gi + βi−1Di−1

here U denotes the unknown function, G gradient, D conjugate
irection, γ step size, 〈, 〉 scalar product, and subscript i is the
teration number.

.2.3. Adjoint problem-gradient
The adjoint problem is derived by means of writing the mini-

ization problem as an unconstrained one:

(u) = 1

2

∫ h

0

∫ l

0

∫ tf

0
(Tcomputed(u, x, y, t) − Tmeasured(x, y, t))2

× δ(x− l)δ(y − ymeas)dtdxdy

+
∫ tf

0

∫ l

0

∫ h

0
ψ(x, y, t)

(
∂2T

∂x2 + ∂2T

∂y2 − 1

α

∂T

∂t

)
dxdydt

here ψ denotes a Lagrange multiplier that is solution of the
djoint problem.

The necessary conditions of stationarity for this functional
ead to the following adjoint problem [3]:

∂2ψ

∂x2 + ∂2ψ

∂y2 + (Tcomputed(l, y, t)

−Tmeasured(l, y, t))δ(y − ymeas)δ(x) = − 1

α

∂ψ

∂t

−k ∂ψ
∂x

= 0, x = 0

k
∂ψ

∂x
= 0, x = l

−k ∂ψ
∂y

= 0, y = 0

k
∂ψ

∂y
= 0, y = h

ψ(x, y, tf) = 0

(3)

By defining a new time variable τ = t − t, the problem can be
f
ntegrated.

The stationarity conditions lead to the gradient:

(t) = −ψ(l, y, t)
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. Results

.1. General description of the numerical tests

In this section, the estimation of internal temperature of bipo-
ar plates is numerically studied. The purpose of the numerical
ests is to determine if it is possible to estimate an internal
emperature raise due to faulty conditions from surface tem-
erature measurements. Experimental data are simulated. An
nomalous heat flux is supposed to happen inside the fuel
ell at x = 0. Solving the direct problem (1) leads to tempe-
ature values at x = 0 and at x = l. Temperature values at x = l
re considered to be surface temperatures issued from tempe-
ature sensors. Temperature and heat flux data at x = 0 are to
e reconstructed, thus they are considered and denoted as the
exact values”.

Using these simulated surface measurements at x = l,
nternal heat flux and temperature at x = 0 are computed
sing the methodology described in Section 3.2. The results
re referred as “computed values” in the following para-
raphs.

The steel and graphite plates characteristics are displayed in
able 1. The anomalous heat flux applied at x = 0 is 1e4 W m−2.
ominal temperature operation is 80 ◦C. Thermocouples K of
.3 ◦C accuracy are assumed to be used. Therefore, the measu-
ement of a 2 ◦C-elevation is possible. Spatial discretization of
he numerical scheme is 5 × 5.

.2. Numerical test case 1: graphite bipolar plates

In this paragraph, estimation of internal temperature of a
raphite plate is presented.

.2.1. Sensitivity analysis
The influence of a flux variation at the point (O, h/2)

n the temperature at the point (l, h/2) is computed using
2).
A numerical test case with 50 steps of 5 s each is conside-
ed. The results are plotted in Fig. 3. They show that a flux
ariation at the first time step produces a sensitivity coefficient
hat is maximal at the 20th time step. It means that in order

Fig. 3. Sensitivity coefficients for 50 time steps of 5 s, graphite plate.
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ig. 4. Surface temperature (simulated measurements) for graphite bipolar
lates.

o estimate the heat flux on one side of the plate at time step
, the best measurement on the other side is the temperature
t time step 20. For the next heat flux value (time step 20),
he best measurement is the temperature at time step 40, and
o forth. The sensitivity coefficient of the 40th time step is
maller. The heat flux value at this time step cannot be well
stimated because the heat does not have the time to reach the
emperature sensor. Of course, the heat flux at the last time
tep cannot be estimated at all, the sensitivity coefficient is
ero.

So, this analysis shows that maximal sensitivity is achieved
ith a response time of about 100 s. This duration is too long

o perform an efficient on-line monitoring of the fuel cell. If
horter duration is used, the temperature estimation is bounded
o be less precise.

.2.2. Inverse problem solution
In this paragraph, the inverse problem of estimating unknown

eat flux and internal temperature values is solved by means of

he methodology described in Section 3.2. The exact anomalous
eat flux produces a temperature elevation of about 50 ◦C inside
he plate and 3 ◦C at the surface in 50 s (Fig. 4). This simulated
emperature surface is used to compute the internal heat flux and

Fig. 5. Exact and estimated heat flux for graphite bipolar plates.
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ig. 6. Exact and estimated internal temperature for graphite bipolar plates.

emperature. The computation lasts less than 2 s on an ordinary
aptop computer.

Fig. 5 presents the exact and computed heat flux values at
he point x = 0, y = h/2. The computed values are found to be
ccurately reconstructed in the first 20 s of the measurement
nterval. The relative error is less than 15%. After that, while
he exact heat flux remains constant, the computed heat flux
trongly decreases. Heat transfer in graphite is too slow to pro-
uce significant surface temperature elevation in less than 30 s.
herefore, the algorithm lacks information and is not able to

econstruct heat flux values in the last part of the interval. The
ccuracy decreases. This result is in accordance with the sensi-
ivity analysis. Fig. 6 presents the exact and computed internal
emperature. As before, the values are accurately computed in
he first half of the time interval. The maximum relative error
etween the exact and computed values remains under 5% for
8 s. This accuracy is better than the accuracy obtained for the
eat flux. It is due to the smoothing effect of the heat equation
1–4].

These observations led to the fact that it is necessary to take
nto account the duration of the heat transfer process to achieve

ccurate estimation of internal values. In this example, if the
emperature measurements interval is of 50 s, the estimation of
he internal values is accurate only for the 20 first seconds.
o, the proposed method produces 5% accurate temperature

Fig. 7. Sensitivity coefficients: 50 time steps of 1 s, steel plate.
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Fig. 8. Surface temperature (simulated measurements) for steel bipolar plates.
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Fig. 9. Exact and estimated heat flux for steel bipolar plates.

alues with a 50-s measurement duration and a 30-s response
ime.
.3. Numerical test case 2: stainless steel bipolar plates

In this paragraph, the bipolar plates are now supposed to be
ade of stainless steel. The steel characteristics are presented in

ig. 10. Exact and estimated internal temperature for stainless steel bipolar
lates.
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able 1. As the thermal conductivity of steel is much higher, an
mprovement in the response time of the temperature estimation
s expected.

.3.1. Sensitivity analysis
Fig. 7 presents the sensitivity coefficients for steel plates. The

oefficients are higher than those for graphite plates. Only the
oefficient of the 40th time step is strongly smaller.

.3.2. Inverse problem solution
The internal heat flux and temperature are estimated from sur-

ace simulated measurements. The exact heat flux is 1e4 W m−2

s in the preceding test case. As the thermophysical properties
f steel and graphite are different, temperature evolution in the
wo cases differs. Globally, the increase in temperature for steel
lates is less important, but the heat transfer is quicker. Fig. 8 pre-
ents the simulated surface temperature of the bipolar plate. The
stimated heat flux and temperature are plotted in Figs. 9 and 10.

As expected, a clear improvement in heat flux and tempera-
ure estimation is observed. For a 50-s measurement, the heat
ux estimation is accurate for 70% of the measurement interval.
he internal temperature is computed with an accuracy better

han 5% for 48 s. Before 35 s, the accuracy of the temperature
stimation is even better (2%). This result is in accordance with
he sensitivity analysis. Heat transfer in the steel is fast enough
o produce a significant surface temperature elevation in about
5 s. Therefore, the algorithm has sufficient data to produce
ccurate results. An accurate estimation of internal tempera-
ure can be carried out with a 2% accuracy and a 15-s response
ime.

So, the proposed method enables us to estimate internal
emperature with a predicted accuracy and response time. The
erformance of the method is linked to the thermophysical pro-
erties of the material, so it is particularly appropriate for fuel
ells made of steel bipolar plates.

. Conclusion

In this paper, a method to estimate internal fuel cell inter-
al temperature from surface measurements is presented. The
im is to monitor fuel cells to prevent damages due to inter-
al overheating. The measurements are taken on the side of
he bipolar plate, and the heat flux and the temperature at
he border of the active zone are estimated. The method is
ased on sensitivity analysis and inverse problem algorithms.
umerical results show that internal temperature can be cor-

ectly estimated. The response time of the method is limited
y the heat transfer rate in the material. Therefore, the method
s particularly appropriate to fuel cells made of steel bipolar
lates.
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